EfficientNet-B0: Optimized for Qualcomm Devices

EfficientNetB0 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This is based on the implementation of EfficientNet-B0 found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
QNN_DLC w8a16 Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit EfficientNet-B0 on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for EfficientNet-B0 on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.image_classification

Model Stats:

  • Model checkpoint: Imagenet
  • Input resolution: 224x224
  • Number of parameters: 5.27M
  • Model size (float): 20.1 MB
  • Model size (w8a16): 6.99 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
EfficientNet-B0 ONNX float Snapdragon® X Elite 1.391 ms 13 - 13 MB NPU
EfficientNet-B0 ONNX float Snapdragon® 8 Gen 3 Mobile 1.063 ms 0 - 134 MB NPU
EfficientNet-B0 ONNX float Qualcomm® QCS8550 (Proxy) 1.402 ms 0 - 24 MB NPU
EfficientNet-B0 ONNX float Qualcomm® QCS9075 1.877 ms 1 - 3 MB NPU
EfficientNet-B0 ONNX float Snapdragon® 8 Elite For Galaxy Mobile 0.839 ms 0 - 108 MB NPU
EfficientNet-B0 ONNX float Snapdragon® 8 Elite Gen 5 Mobile 0.659 ms 0 - 107 MB NPU
EfficientNet-B0 ONNX w8a16 Snapdragon® X Elite 1.618 ms 6 - 6 MB NPU
EfficientNet-B0 ONNX w8a16 Snapdragon® 8 Gen 3 Mobile 1.155 ms 0 - 146 MB NPU
EfficientNet-B0 ONNX w8a16 Qualcomm® QCS6490 122.425 ms 42 - 44 MB CPU
EfficientNet-B0 ONNX w8a16 Qualcomm® QCS8550 (Proxy) 1.634 ms 0 - 10 MB NPU
EfficientNet-B0 ONNX w8a16 Qualcomm® QCS9075 1.851 ms 0 - 3 MB NPU
EfficientNet-B0 ONNX w8a16 Qualcomm® QCM6690 66.291 ms 42 - 51 MB CPU
EfficientNet-B0 ONNX w8a16 Snapdragon® 8 Elite For Galaxy Mobile 0.816 ms 0 - 124 MB NPU
EfficientNet-B0 ONNX w8a16 Snapdragon® 7 Gen 4 Mobile 54.16 ms 49 - 58 MB CPU
EfficientNet-B0 ONNX w8a16 Snapdragon® 8 Elite Gen 5 Mobile 0.699 ms 0 - 123 MB NPU
EfficientNet-B0 QNN_DLC float Snapdragon® X Elite 1.756 ms 1 - 1 MB NPU
EfficientNet-B0 QNN_DLC float Snapdragon® 8 Gen 3 Mobile 1.076 ms 0 - 63 MB NPU
EfficientNet-B0 QNN_DLC float Qualcomm® QCS8275 (Proxy) 4.898 ms 1 - 38 MB NPU
EfficientNet-B0 QNN_DLC float Qualcomm® QCS8550 (Proxy) 1.554 ms 1 - 2 MB NPU
EfficientNet-B0 QNN_DLC float Qualcomm® SA8775P 8.846 ms 1 - 39 MB NPU
EfficientNet-B0 QNN_DLC float Qualcomm® QCS9075 1.857 ms 3 - 5 MB NPU
EfficientNet-B0 QNN_DLC float Qualcomm® QCS8450 (Proxy) 3.601 ms 0 - 73 MB NPU
EfficientNet-B0 QNN_DLC float Qualcomm® SA7255P 4.898 ms 1 - 38 MB NPU
EfficientNet-B0 QNN_DLC float Qualcomm® SA8295P 3.614 ms 0 - 45 MB NPU
EfficientNet-B0 QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 0.806 ms 1 - 44 MB NPU
EfficientNet-B0 QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 0.614 ms 1 - 44 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Snapdragon® X Elite 1.896 ms 0 - 0 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Snapdragon® 8 Gen 3 Mobile 1.126 ms 0 - 65 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® QCS6490 4.316 ms 0 - 2 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® QCS8275 (Proxy) 3.293 ms 0 - 45 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® QCS8550 (Proxy) 1.677 ms 0 - 2 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® SA8775P 1.944 ms 0 - 49 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® QCS9075 1.857 ms 2 - 4 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® QCM6690 6.533 ms 0 - 163 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® QCS8450 (Proxy) 1.977 ms 0 - 67 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® SA7255P 3.293 ms 0 - 45 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Qualcomm® SA8295P 2.358 ms 0 - 43 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Snapdragon® 8 Elite For Galaxy Mobile 0.783 ms 0 - 43 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Snapdragon® 7 Gen 4 Mobile 1.674 ms 0 - 47 MB NPU
EfficientNet-B0 QNN_DLC w8a16 Snapdragon® 8 Elite Gen 5 Mobile 0.639 ms 0 - 48 MB NPU
EfficientNet-B0 TFLITE float Snapdragon® 8 Gen 3 Mobile 1.073 ms 0 - 77 MB NPU
EfficientNet-B0 TFLITE float Qualcomm® QCS8275 (Proxy) 4.911 ms 0 - 46 MB NPU
EfficientNet-B0 TFLITE float Qualcomm® QCS8550 (Proxy) 1.542 ms 0 - 131 MB NPU
EfficientNet-B0 TFLITE float Qualcomm® SA8775P 8.913 ms 0 - 46 MB NPU
EfficientNet-B0 TFLITE float Qualcomm® QCS9075 1.877 ms 0 - 16 MB NPU
EfficientNet-B0 TFLITE float Qualcomm® QCS8450 (Proxy) 3.616 ms 0 - 80 MB NPU
EfficientNet-B0 TFLITE float Qualcomm® SA7255P 4.911 ms 0 - 46 MB NPU
EfficientNet-B0 TFLITE float Qualcomm® SA8295P 3.657 ms 0 - 52 MB NPU
EfficientNet-B0 TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 0.811 ms 0 - 45 MB NPU
EfficientNet-B0 TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 0.612 ms 0 - 50 MB NPU

License

  • The license for the original implementation of EfficientNet-B0 can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/EfficientNet-B0