EfficientNet-B0: Optimized for Qualcomm Devices
EfficientNetB0 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This is based on the implementation of EfficientNet-B0 found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a16 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a16 | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit EfficientNet-B0 on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for EfficientNet-B0 on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_classification
Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 5.27M
- Model size (float): 20.1 MB
- Model size (w8a16): 6.99 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| EfficientNet-B0 | ONNX | float | Snapdragon® X Elite | 1.391 ms | 13 - 13 MB | NPU |
| EfficientNet-B0 | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 1.063 ms | 0 - 134 MB | NPU |
| EfficientNet-B0 | ONNX | float | Qualcomm® QCS8550 (Proxy) | 1.402 ms | 0 - 24 MB | NPU |
| EfficientNet-B0 | ONNX | float | Qualcomm® QCS9075 | 1.877 ms | 1 - 3 MB | NPU |
| EfficientNet-B0 | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.839 ms | 0 - 108 MB | NPU |
| EfficientNet-B0 | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.659 ms | 0 - 107 MB | NPU |
| EfficientNet-B0 | ONNX | w8a16 | Snapdragon® X Elite | 1.618 ms | 6 - 6 MB | NPU |
| EfficientNet-B0 | ONNX | w8a16 | Snapdragon® 8 Gen 3 Mobile | 1.155 ms | 0 - 146 MB | NPU |
| EfficientNet-B0 | ONNX | w8a16 | Qualcomm® QCS6490 | 122.425 ms | 42 - 44 MB | CPU |
| EfficientNet-B0 | ONNX | w8a16 | Qualcomm® QCS8550 (Proxy) | 1.634 ms | 0 - 10 MB | NPU |
| EfficientNet-B0 | ONNX | w8a16 | Qualcomm® QCS9075 | 1.851 ms | 0 - 3 MB | NPU |
| EfficientNet-B0 | ONNX | w8a16 | Qualcomm® QCM6690 | 66.291 ms | 42 - 51 MB | CPU |
| EfficientNet-B0 | ONNX | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 0.816 ms | 0 - 124 MB | NPU |
| EfficientNet-B0 | ONNX | w8a16 | Snapdragon® 7 Gen 4 Mobile | 54.16 ms | 49 - 58 MB | CPU |
| EfficientNet-B0 | ONNX | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 0.699 ms | 0 - 123 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Snapdragon® X Elite | 1.756 ms | 1 - 1 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 1.076 ms | 0 - 63 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 4.898 ms | 1 - 38 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 1.554 ms | 1 - 2 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Qualcomm® SA8775P | 8.846 ms | 1 - 39 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Qualcomm® QCS9075 | 1.857 ms | 3 - 5 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 3.601 ms | 0 - 73 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Qualcomm® SA7255P | 4.898 ms | 1 - 38 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Qualcomm® SA8295P | 3.614 ms | 0 - 45 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.806 ms | 1 - 44 MB | NPU |
| EfficientNet-B0 | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.614 ms | 1 - 44 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Snapdragon® X Elite | 1.896 ms | 0 - 0 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Snapdragon® 8 Gen 3 Mobile | 1.126 ms | 0 - 65 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® QCS6490 | 4.316 ms | 0 - 2 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® QCS8275 (Proxy) | 3.293 ms | 0 - 45 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® QCS8550 (Proxy) | 1.677 ms | 0 - 2 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® SA8775P | 1.944 ms | 0 - 49 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® QCS9075 | 1.857 ms | 2 - 4 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® QCM6690 | 6.533 ms | 0 - 163 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® QCS8450 (Proxy) | 1.977 ms | 0 - 67 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® SA7255P | 3.293 ms | 0 - 45 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Qualcomm® SA8295P | 2.358 ms | 0 - 43 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 0.783 ms | 0 - 43 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Snapdragon® 7 Gen 4 Mobile | 1.674 ms | 0 - 47 MB | NPU |
| EfficientNet-B0 | QNN_DLC | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 0.639 ms | 0 - 48 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 1.073 ms | 0 - 77 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 4.911 ms | 0 - 46 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 1.542 ms | 0 - 131 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Qualcomm® SA8775P | 8.913 ms | 0 - 46 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Qualcomm® QCS9075 | 1.877 ms | 0 - 16 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 3.616 ms | 0 - 80 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Qualcomm® SA7255P | 4.911 ms | 0 - 46 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Qualcomm® SA8295P | 3.657 ms | 0 - 52 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.811 ms | 0 - 45 MB | NPU |
| EfficientNet-B0 | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.612 ms | 0 - 50 MB | NPU |
License
- The license for the original implementation of EfficientNet-B0 can be found here.
References
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
