Post
68
๐ NanoHammer-1.5B-Instruct:
NoesisLab/NanoHammer-1.5B-Instruct
We are excited to introduce NanoHammer, a novel architecture by NoesisLab designed for Causal State Compression and true Linear Inference Complexity.
๐ง The Core: Holographic State SpaceForget the growing KV Cache. NanoHammer leverages Holographic Rotary Embeddings to compress sequence history into a dynamic integral state.
Polynomial Compression: Instead of storing raw history, we "integrate" context into a complex number space , treating memory as a container of evolving polynomial coefficients.
Dynamic Evolution: The architecture features a custom StateUpdateCell that uses Euler method fixed-point iteration, allowing the model to perform implicit reasoning via differential state updates.
โก Why It Matters: Efficiency Meets Reasoning O(1) Inference Memory: State size remains constant regardless of sequence length.Causal Modeling: Explicitly models the causal flow of logic through time, perfect for "implicit reasoning" tasks without the verbosity of Chain-of-Thought.1.5B Lightweight Design: High performance, low resource footprint.
๐ Model Card HighlightsType: nanohammer (Hybrid Causal-State Architecture)
License: Apache 2.0
Capabilities: Instruction following, Long-context handling
๐ Try it on Hugging Face: NoesisLab/NanoHammer-1.5B-Instruct
NoesisLab/NanoHammer-1.5B-Instruct
We are excited to introduce NanoHammer, a novel architecture by NoesisLab designed for Causal State Compression and true Linear Inference Complexity.
๐ง The Core: Holographic State SpaceForget the growing KV Cache. NanoHammer leverages Holographic Rotary Embeddings to compress sequence history into a dynamic integral state.
Polynomial Compression: Instead of storing raw history, we "integrate" context into a complex number space , treating memory as a container of evolving polynomial coefficients.
Dynamic Evolution: The architecture features a custom StateUpdateCell that uses Euler method fixed-point iteration, allowing the model to perform implicit reasoning via differential state updates.
โก Why It Matters: Efficiency Meets Reasoning O(1) Inference Memory: State size remains constant regardless of sequence length.Causal Modeling: Explicitly models the causal flow of logic through time, perfect for "implicit reasoning" tasks without the verbosity of Chain-of-Thought.1.5B Lightweight Design: High performance, low resource footprint.
๐ Model Card HighlightsType: nanohammer (Hybrid Causal-State Architecture)
License: Apache 2.0
Capabilities: Instruction following, Long-context handling
๐ Try it on Hugging Face: NoesisLab/NanoHammer-1.5B-Instruct