llama-3.1-phishing-adapter-a100
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0060
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.2262 | 0.0870 | 25 | 0.0661 | 1.0 |
| 0.0715 | 0.1739 | 50 | 0.0525 | 0.9444 |
| 0.0725 | 0.2609 | 75 | 0.0136 | 0.5500 |
| 0.0252 | 0.3478 | 100 | 0.0190 | 0.8662 |
| 0.0109 | 0.4348 | 125 | 0.0392 | 0.9887 |
| 0.0315 | 0.5217 | 150 | 0.0529 | 1.0 |
| 0.0123 | 0.6087 | 175 | 0.0195 | 1.0 |
| 0.0124 | 0.6957 | 200 | 0.0102 | 1.0 |
| 0.0139 | 0.7826 | 225 | 0.0056 | 1.0 |
| 0.0124 | 0.8696 | 250 | 0.0065 | 1.0 |
| 0.0111 | 0.9565 | 275 | 0.0060 | 1.0 |
Framework versions
- PEFT 0.18.1
- Transformers 4.57.6
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.2
- Downloads last month
- 9
Model tree for mathisdu/llama-3.1-phishing-adapter-a100
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct