File size: 23,042 Bytes
0191ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789e257
 
 
 
 
 
 
 
 
 
0191ae7
 
 
 
 
789e257
0191ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
"""
plotting.py
-----------
Chart-generation functions for time-series visualisation.

Every public function returns a :class:`matplotlib.figure.Figure` object.
Callers (e.g. Streamlit pages) can pass the figure to ``st.pyplot(fig)``
or convert it to PNG bytes via :func:`fig_to_png_bytes`.

All functions accept an optional *style_dict* (typically from
:func:`ui_theme.get_miami_mpl_style`) and an optional *palette_colors*
list so that colours stay consistent across the application.
"""

from __future__ import annotations

import io
import math
from typing import Dict, List, Optional, Sequence

# CRITICAL: set the non-interactive backend before any other mpl import.
import matplotlib
matplotlib.use("Agg")

import matplotlib.pyplot as plt  # noqa: E402
import matplotlib.dates as mdates  # noqa: E402
import numpy as np  # noqa: E402
import pandas as pd  # noqa: E402

# ---------------------------------------------------------------------------
# Brand defaults (mirrors ui_theme.py)
# ---------------------------------------------------------------------------
MIAMI_RED: str = "#C41230"
_DEFAULT_FIG_SIZE = (10, 6)


# ---------------------------------------------------------------------------
# Utility
# ---------------------------------------------------------------------------

def fig_to_png_bytes(fig: matplotlib.figure.Figure, dpi: int = 150) -> bytes:
    """Render *fig* to an in-memory PNG and return the raw bytes."""
    buf = io.BytesIO()
    fig.savefig(buf, format="png", dpi=dpi, bbox_inches="tight")
    buf.seek(0)
    return buf.read()


# ---------------------------------------------------------------------------
# Internal helpers
# ---------------------------------------------------------------------------

class _StyleContext:
    """Context manager that temporarily applies *style_dict* to rcParams.

    On exit the previous values are restored so that other figures are not
    affected.
    """

    def __init__(self, style_dict: Optional[Dict[str, object]]):
        self._style = style_dict
        self._saved: Dict[str, object] = {}

    def __enter__(self) -> "_StyleContext":
        if self._style:
            for key, value in self._style.items():
                self._saved[key] = plt.rcParams.get(key)
                try:
                    plt.rcParams[key] = value
                except (KeyError, ValueError):
                    pass
        return self

    def __exit__(self, *exc_info: object) -> None:
        for key, value in self._saved.items():
            try:
                plt.rcParams[key] = value
            except (KeyError, ValueError):
                pass


def _default_color(palette_colors: Optional[List[str]], idx: int = 0) -> str:
    """Pick a colour from *palette_colors* or fall back to MIAMI_RED."""
    if palette_colors and len(palette_colors) > idx:
        return palette_colors[idx % len(palette_colors)]
    return MIAMI_RED


def _finish_figure(fig: matplotlib.figure.Figure) -> matplotlib.figure.Figure:
    """Apply common finishing touches and return the figure."""
    fig.tight_layout()
    return fig


def _auto_date_axis(ax: plt.Axes) -> None:
    """Auto-format and rotate date tick labels."""
    ax.xaxis.set_major_formatter(mdates.AutoDateFormatter(mdates.AutoDateLocator()))
    for label in ax.get_xticklabels():
        label.set_rotation(30)
        label.set_ha("right")


def _grid_dims(n: int) -> tuple[int, int]:
    """Return (nrows, ncols) for a compact grid of *n* panels."""
    ncols = min(n, 3)
    nrows = math.ceil(n / ncols)
    return nrows, ncols


# ===================================================================
# 1. Line with markers
# ===================================================================

def plot_line_with_markers(
    df: pd.DataFrame,
    date_col: str,
    y_col: str,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
    palette_colors: Optional[List[str]] = None,
) -> matplotlib.figure.Figure:
    """Simple line plot with small circle markers.

    Uses the first palette colour or *MIAMI_RED* as the default.
    """
    with _StyleContext(style_dict):
        fig, ax = plt.subplots(figsize=_DEFAULT_FIG_SIZE)
        color = _default_color(palette_colors, 0)
        ax.plot(
            df[date_col], df[y_col],
            marker="o", markersize=4, linewidth=1.5,
            color=color, label=y_col,
        )
        ax.set_xlabel(date_col)
        ax.set_ylabel(y_col)
        if title:
            ax.set_title(title)
        _auto_date_axis(ax)
        ax.legend(loc="best")
    return _finish_figure(fig)


# ===================================================================
# 2. Line with coloured markers
# ===================================================================

def plot_line_colored_markers(
    df: pd.DataFrame,
    date_col: str,
    y_col: str,
    color_by: str,
    palette_colors: List[str],
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
) -> matplotlib.figure.Figure:
    """Line plot where marker colour varies by a categorical column.

    A legend is added mapping each unique value of *color_by* to its
    colour.
    """
    with _StyleContext(style_dict):
        fig, ax = plt.subplots(figsize=_DEFAULT_FIG_SIZE)

        # Draw the connecting line in a neutral grey
        ax.plot(
            df[date_col], df[y_col],
            linewidth=1.0, color="#AAAAAA", zorder=1,
        )

        # Map categories to colours
        categories = df[color_by].unique()
        n_cats = len(categories)
        if len(palette_colors) < n_cats:
            # cycle palette to cover all categories
            import itertools
            palette_colors = list(itertools.islice(
                itertools.cycle(palette_colors), n_cats
            ))

        color_map = {cat: palette_colors[i] for i, cat in enumerate(categories)}

        for cat in categories:
            mask = df[color_by] == cat
            ax.scatter(
                df.loc[mask, date_col], df.loc[mask, y_col],
                c=color_map[cat], label=str(cat),
                s=30, zorder=2, edgecolors="white", linewidths=0.3,
            )

        ax.set_xlabel(date_col)
        ax.set_ylabel(y_col)
        if title:
            ax.set_title(title)
        _auto_date_axis(ax)
        ax.legend(title=color_by, loc="best", fontsize=8, ncol=max(1, n_cats // 8))
    return _finish_figure(fig)


# ===================================================================
# 3. Seasonal plot
# ===================================================================

def plot_seasonal(
    df: pd.DataFrame,
    date_col: str,
    y_col: str,
    period: str,
    palette_name_colors: List[str],
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
) -> matplotlib.figure.Figure:
    """Seasonal plot: one line per year/cycle, x-axis is within-period position.

    Parameters
    ----------
    period:
        ``"month"`` (x = month 1-12) or ``"quarter"`` (x = quarter 1-4).
    palette_name_colors:
        List of hex colours; one per cycle/year.
    """
    with _StyleContext(style_dict):
        tmp = df[[date_col, y_col]].copy()
        tmp["_year"] = tmp[date_col].dt.year

        if period.lower().startswith("q"):
            tmp["_period_pos"] = tmp[date_col].dt.quarter
            x_label = "Quarter"
        else:
            tmp["_period_pos"] = tmp[date_col].dt.month
            x_label = "Month"

        years = sorted(tmp["_year"].unique())
        n_years = len(years)
        if len(palette_name_colors) < n_years:
            import itertools
            palette_name_colors = list(itertools.islice(
                itertools.cycle(palette_name_colors), n_years
            ))

        fig, ax = plt.subplots(figsize=_DEFAULT_FIG_SIZE)
        for i, year in enumerate(years):
            sub = tmp[tmp["_year"] == year].sort_values("_period_pos")
            ax.plot(
                sub["_period_pos"], sub[y_col],
                marker="o", markersize=4, linewidth=1.4,
                color=palette_name_colors[i], label=str(year),
            )

        ax.set_xlabel(x_label)
        ax.set_ylabel(y_col)
        if title:
            ax.set_title(title)
        ax.legend(title="Year", loc="best", fontsize=8, ncol=max(1, n_years // 6))
    return _finish_figure(fig)


# ===================================================================
# 4. Seasonal sub-series
# ===================================================================

def plot_seasonal_subseries(
    df: pd.DataFrame,
    date_col: str,
    y_col: str,
    period: str,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
    palette_colors: Optional[List[str]] = None,
) -> matplotlib.figure.Figure:
    """Subseries plot with vertical panels for each season and horizontal mean lines.

    Parameters
    ----------
    period:
        ``"month"`` or ``"quarter"``.
    """
    with _StyleContext(style_dict):
        tmp = df[[date_col, y_col]].copy()

        if period.lower().startswith("q"):
            tmp["_season"] = tmp[date_col].dt.quarter
            labels = {1: "Q1", 2: "Q2", 3: "Q3", 4: "Q4"}
        else:
            tmp["_season"] = tmp[date_col].dt.month
            labels = {
                1: "Jan", 2: "Feb", 3: "Mar", 4: "Apr",
                5: "May", 6: "Jun", 7: "Jul", 8: "Aug",
                9: "Sep", 10: "Oct", 11: "Nov", 12: "Dec",
            }

        seasons = sorted(tmp["_season"].unique())
        n = len(seasons)
        fig_w = max(10, n * 1.3)
        fig, axes = plt.subplots(1, n, figsize=(fig_w, 5), sharey=True)
        if n == 1:
            axes = [axes]

        color = _default_color(palette_colors, 0)

        for idx, season in enumerate(seasons):
            ax = axes[idx]
            sub = tmp[tmp["_season"] == season].sort_values(date_col)
            x_positions = range(len(sub))
            ax.plot(x_positions, sub[y_col].values, marker="o", markersize=3,
                    linewidth=1.2, color=color)

            mean_val = sub[y_col].mean()
            ax.axhline(mean_val, color=MIAMI_RED, linewidth=1.8, linestyle="--", alpha=0.8)

            ax.set_title(labels.get(season, str(season)), fontsize=10)
            ax.set_xticks([])
            ax.tick_params(axis="y", labelsize=8)
            if idx == 0:
                ax.set_ylabel(y_col)

        if title:
            fig.suptitle(title, fontsize=14, fontweight="bold", y=1.02)
    return _finish_figure(fig)


# ===================================================================
# 5. ACF / PACF
# ===================================================================

def plot_acf_pacf(
    acf_vals: np.ndarray,
    acf_ci: np.ndarray,
    pacf_vals: np.ndarray,
    pacf_ci: np.ndarray,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
) -> matplotlib.figure.Figure:
    """Side-by-side ACF and PACF bar plots with confidence-interval bands.

    Parameters
    ----------
    acf_vals, pacf_vals:
        1-D arrays of autocorrelation values (lag 0, 1, ...).
    acf_ci, pacf_ci:
        Arrays of shape ``(n_lags, 2)`` giving the lower and upper CI bounds.
    """
    with _StyleContext(style_dict):
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

        for ax, vals, ci, sub_title in [
            (ax1, acf_vals, acf_ci, "ACF"),
            (ax2, pacf_vals, pacf_ci, "PACF"),
        ]:
            lags = np.arange(len(vals))
            ax.bar(lags, vals, width=0.3, color=MIAMI_RED, alpha=0.85, zorder=2)

            # Confidence band
            lower = ci[:, 0]
            upper = ci[:, 1]
            ax.fill_between(lags, lower, upper, color="#C41230", alpha=0.12, zorder=1)
            ax.axhline(0, color="black", linewidth=0.8)

            ax.set_xlabel("Lag")
            ax.set_ylabel("Correlation")
            ax.set_title(sub_title)

        if title:
            fig.suptitle(title, fontsize=14, fontweight="bold", y=1.02)
    return _finish_figure(fig)


# ===================================================================
# 6. Decomposition
# ===================================================================

def plot_decomposition(
    decomposition_result,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
) -> matplotlib.figure.Figure:
    """4-panel plot: observed, trend, seasonal, residual.

    Parameters
    ----------
    decomposition_result:
        An object with ``.observed``, ``.trend``, ``.seasonal``, and
        ``.resid`` attributes (e.g. from ``statsmodels.tsa.seasonal_decompose``).
    """
    with _StyleContext(style_dict):
        components = [
            ("Observed", decomposition_result.observed),
            ("Trend", decomposition_result.trend),
            ("Seasonal", decomposition_result.seasonal),
            ("Residual", decomposition_result.resid),
        ]
        fig, axes = plt.subplots(4, 1, figsize=(10, 10), sharex=True)

        for ax, (label, series) in zip(axes, components):
            ax.plot(series.index, series.values, linewidth=1.2, color=MIAMI_RED)
            ax.set_ylabel(label, fontsize=10)
            ax.tick_params(axis="both", labelsize=9)

        # Date formatting on the shared x-axis (bottom panel)
        _auto_date_axis(axes[-1])

        if title:
            fig.suptitle(title, fontsize=14, fontweight="bold", y=1.01)
    return _finish_figure(fig)


# ===================================================================
# 7. Rolling overlay
# ===================================================================

def plot_rolling_overlay(
    df: pd.DataFrame,
    date_col: str,
    y_col: str,
    window: int,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
    palette_colors: Optional[List[str]] = None,
) -> matplotlib.figure.Figure:
    """Original series (light) with rolling-mean overlay (bold) and +/-1 std band."""
    with _StyleContext(style_dict):
        fig, ax = plt.subplots(figsize=_DEFAULT_FIG_SIZE)

        raw_color = _default_color(palette_colors, 0)
        mean_color = _default_color(palette_colors, 1) if palette_colors and len(palette_colors) > 1 else "#333333"

        dates = df[date_col]
        vals = df[y_col]
        rolling_mean = vals.rolling(window=window, center=True).mean()
        rolling_std = vals.rolling(window=window, center=True).std()

        # Original series (light)
        ax.plot(dates, vals, linewidth=0.8, alpha=0.4, color=raw_color, label="Original")

        # Rolling mean (bold)
        ax.plot(dates, rolling_mean, linewidth=2.2, color=mean_color,
                label=f"{window}-pt Rolling Mean")

        # +/- 1 std band
        ax.fill_between(
            dates,
            rolling_mean - rolling_std,
            rolling_mean + rolling_std,
            alpha=0.15, color=mean_color, label="\u00b11 Std Dev",
        )

        ax.set_xlabel(date_col)
        ax.set_ylabel(y_col)
        if title:
            ax.set_title(title)
        _auto_date_axis(ax)
        ax.legend(loc="best")
    return _finish_figure(fig)


# ===================================================================
# 8. Year-over-Year change
# ===================================================================

def plot_yoy_change(
    df: pd.DataFrame,
    date_col: str,
    y_col: str,
    yoy_df: pd.DataFrame,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
) -> matplotlib.figure.Figure:
    """Two-subplot bar chart: absolute YoY change (top) and percentage YoY change (bottom).

    Parameters
    ----------
    yoy_df:
        DataFrame with columns ``"date"``, ``"abs_change"``, ``"pct_change"``.
    """
    with _StyleContext(style_dict):
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), sharex=True)

        dates = yoy_df["date"]
        abs_change = yoy_df["abs_change"]
        pct_change = yoy_df["pct_change"]

        # Colours: green for positive, red for negative
        abs_colors = ["#2ca02c" if v >= 0 else "#d62728" for v in abs_change]
        pct_colors = ["#2ca02c" if v >= 0 else "#d62728" for v in pct_change]

        ax1.bar(dates, abs_change, color=abs_colors, width=20, edgecolor="white", linewidth=0.3)
        ax1.axhline(0, color="black", linewidth=0.6)
        ax1.set_ylabel("Absolute Change")
        ax1.set_title("Year-over-Year Absolute Change")

        ax2.bar(dates, pct_change, color=pct_colors, width=20, edgecolor="white", linewidth=0.3)
        ax2.axhline(0, color="black", linewidth=0.6)
        ax2.set_ylabel("% Change")
        ax2.set_title("Year-over-Year Percentage Change")

        _auto_date_axis(ax2)

        if title:
            fig.suptitle(title, fontsize=14, fontweight="bold", y=1.02)
    return _finish_figure(fig)


# ===================================================================
# 9. Lag plot
# ===================================================================

def plot_lag(
    series: pd.Series,
    lag: int = 1,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
) -> matplotlib.figure.Figure:
    """Scatter plot of y(t) vs y(t-lag) with correlation-coefficient annotation."""
    with _StyleContext(style_dict):
        y = series.dropna().values
        y_t = y[lag:]
        y_lag = y[:-lag]

        corr = np.corrcoef(y_t, y_lag)[0, 1]

        fig, ax = plt.subplots(figsize=(7, 7))
        ax.scatter(y_lag, y_t, alpha=0.5, s=20, color=MIAMI_RED, edgecolors="white", linewidths=0.3)

        # Annotation
        ax.annotate(
            f"r = {corr:.3f}",
            xy=(0.05, 0.95), xycoords="axes fraction",
            fontsize=12, fontweight="bold",
            bbox=dict(boxstyle="round,pad=0.3", facecolor="white", edgecolor="#CCCCCC", alpha=0.9),
            verticalalignment="top",
        )

        ax.set_xlabel(f"y(t\u2212{lag})")
        ax.set_ylabel("y(t)")
        if title:
            ax.set_title(title)
        else:
            ax.set_title(f"Lag-{lag} Plot")
    return _finish_figure(fig)


# ===================================================================
# 10. Panel (small multiples)
# ===================================================================

def plot_panel(
    df: pd.DataFrame,
    date_col: str,
    y_cols: List[str],
    chart_type: str = "line",
    shared_y: bool = True,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
    palette_colors: Optional[List[str]] = None,
) -> matplotlib.figure.Figure:
    """Small multiples: one subplot per *y_col* arranged in a grid.

    Parameters
    ----------
    chart_type:
        ``"line"`` or ``"bar"``.
    shared_y:
        If ``True`` all panels share the same y-axis limits.
    """
    with _StyleContext(style_dict):
        n = len(y_cols)
        nrows, ncols = _grid_dims(n)
        fig_h = max(4, nrows * 3.5)
        fig_w = max(8, ncols * 4.5)
        fig, axes = plt.subplots(
            nrows, ncols, figsize=(fig_w, fig_h),
            sharey=shared_y, squeeze=False,
        )
        flat_axes = axes.flatten()

        # Compute a sensible bar width from the median date spacing
        bar_width = None
        if chart_type == "bar":
            dates_sorted = df[date_col].dropna().sort_values()
            if len(dates_sorted) >= 2:
                median_gap = dates_sorted.diff().dropna().median()
                bar_width = median_gap * 0.9
            else:
                bar_width = 1

        for i, col in enumerate(y_cols):
            ax = flat_axes[i]
            color = _default_color(palette_colors, i)

            if chart_type == "bar":
                ax.bar(df[date_col], df[col], width=bar_width, color=color, alpha=0.85, edgecolor="white", linewidth=0.3)
            else:
                ax.plot(df[date_col], df[col], linewidth=1.3, color=color)

            ax.set_title(col, fontsize=10)
            _auto_date_axis(ax)

        # Hide unused subplots
        for j in range(n, len(flat_axes)):
            flat_axes[j].set_visible(False)

        if title:
            fig.suptitle(title, fontsize=14, fontweight="bold", y=1.02)
    return _finish_figure(fig)


# ===================================================================
# 11. Spaghetti plot
# ===================================================================

def plot_spaghetti(
    df: pd.DataFrame,
    date_col: str,
    y_cols: List[str],
    alpha: float = 0.15,
    highlight_col: Optional[str] = None,
    top_n: Optional[int] = None,
    show_median_band: bool = False,
    title: Optional[str] = None,
    style_dict: Optional[Dict[str, object]] = None,
    palette_colors: Optional[List[str]] = None,
) -> matplotlib.figure.Figure:
    """All series on one plot at low opacity, with optional highlighting.

    Parameters
    ----------
    alpha:
        Opacity for the background spaghetti lines.
    highlight_col:
        Column name to draw with full opacity and thicker line.
    top_n:
        If set, highlight the *top_n* series by maximum value.
    show_median_band:
        If ``True``, overlay the median line and shade the IQR.
    """
    with _StyleContext(style_dict):
        fig, ax = plt.subplots(figsize=_DEFAULT_FIG_SIZE)

        dates = df[date_col]

        # Determine which columns to highlight
        highlight_set: set[str] = set()
        if highlight_col and highlight_col in y_cols:
            highlight_set.add(highlight_col)
        if top_n:
            max_vals = {col: df[col].max() for col in y_cols}
            sorted_cols = sorted(max_vals, key=max_vals.get, reverse=True)  # type: ignore[arg-type]
            highlight_set.update(sorted_cols[:top_n])

        # Draw all series
        for i, col in enumerate(y_cols):
            color = _default_color(palette_colors, i)
            if col in highlight_set:
                ax.plot(dates, df[col], linewidth=2.0, alpha=0.9,
                        color=color, label=col, zorder=3)
            else:
                ax.plot(dates, df[col], linewidth=0.8, alpha=alpha,
                        color=color, zorder=1)

        # Median + IQR band
        if show_median_band:
            numeric_data = df[y_cols]
            median_line = numeric_data.median(axis=1)
            q1 = numeric_data.quantile(0.25, axis=1)
            q3 = numeric_data.quantile(0.75, axis=1)

            ax.plot(dates, median_line, linewidth=2.2, color="#333333",
                    label="Median", zorder=4)
            ax.fill_between(dates, q1, q3, alpha=0.2, color="#333333",
                            label="IQR", zorder=2)

        ax.set_xlabel(date_col)
        ax.set_ylabel("Value")
        if title:
            ax.set_title(title)
        _auto_date_axis(ax)

        # Only add legend if there are labelled items
        handles, labels = ax.get_legend_handles_labels()
        if labels:
            ax.legend(loc="best", fontsize=8)
    return _finish_figure(fig)