Evaluating Monolingual and Multilingual Large Language Models for Greek Question Answering: The DemosQA Benchmark
Abstract
Research addresses the lack of effective monolingual LLMs for under-resourced languages like Greek by creating a specialized dataset, evaluation framework, and conducting comprehensive model comparisons across multiple QA tasks.
Recent advancements in Natural Language Processing and Deep Learning have enabled the development of Large Language Models (LLMs), which have significantly advanced the state-of-the-art across a wide range of tasks, including Question Answering (QA). Despite these advancements, research on LLMs has primarily targeted high-resourced languages (e.g., English), and only recently has attention shifted toward multilingual models. However, these models demonstrate a training data bias towards a small number of popular languages or rely on transfer learning from high- to under-resourced languages; this may lead to a misrepresentation of social, cultural, and historical aspects. To address this challenge, monolingual LLMs have been developed for under-resourced languages; however, their effectiveness remains less studied when compared to multilingual counterparts on language-specific tasks. In this study, we address this research gap in Greek QA by contributing: (i) DemosQA, a novel dataset, which is constructed using social media user questions and community-reviewed answers to better capture the Greek social and cultural zeitgeist; (ii) a memory-efficient LLM evaluation framework adaptable to diverse QA datasets and languages; and (iii) an extensive evaluation of 11 monolingual and multilingual LLMs on 6 human-curated Greek QA datasets using 3 different prompting strategies. We release our code and data to facilitate reproducibility.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper