MATEO: A Multimodal Benchmark for Temporal Reasoning and Planning in LVLMs
Abstract
MATEO benchmark evaluates Large Vision Language Models' temporal reasoning abilities for real-world planning by analyzing multimodal recipe data with graph-structured temporal execution orders.
AI agents need to plan to achieve complex goals that involve orchestrating perception, sub-goal decomposition, and execution. These plans consist of ordered steps structured according to a Temporal Execution Order (TEO, a directed acyclic graph that ensures each step executes only after its preconditions are satisfied. Existing research on foundational models' understanding of temporal execution is limited to automatically derived annotations, approximations of the TEO as a linear chain, or text-only inputs. To address this gap, we introduce MATEO (MultimodAl Temporal Execution Order), a benchmark designed to assess and improve the temporal reasoning abilities of Large Vision Language Models (LVLMs) required for real-world planning. We acquire a high-quality professional multimodal recipe corpus, authored through a standardized editorial process that decomposes instructions into discrete steps, each paired with corresponding images. We collect TEO annotations as graphs by designing and using a scalable crowdsourcing pipeline. Using MATEO, we evaluate six state-of-the-art LVLMs across model scales, varying language context, multimodal input structure, and fine-tuning strategies.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper