Flexible Entropy Control in RLVR with Gradient-Preserving Perspective
Abstract
Reinforcement learning with verifiable rewards faces entropy collapse issues due to gradient-preserving clipping, which this paper addresses through dynamic entropy control mechanisms.
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a critical method for enhancing the reasoning capabilities of Large Language Models (LLMs). However, continuous training often leads to policy entropy collapse, characterized by a rapid decay in entropy that results in premature overconfidence, reduced output diversity, and vanishing gradient norms that inhibit learning. Gradient-Preserving Clipping is a primary factor influencing these dynamics, but existing mitigation strategies are largely static and lack a framework connecting clipping mechanisms to precise entropy control. This paper proposes reshaping entropy control in RL from the perspective of Gradient-Preserving Clipping. We first theoretically and empirically verify the contributions of specific importance sampling ratio regions to entropy growth and reduction. Leveraging these findings, we introduce a novel regulation mechanism using dynamic clipping threshold to precisely manage entropy. Furthermore, we design and evaluate dynamic entropy control strategies, including increase-then-decrease, decrease-increase-decrease, and oscillatory decay. Experimental results demonstrate that these strategies effectively mitigate entropy collapse, and achieve superior performance across multiple benchmarks.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper