PhysicsAgentABM: Physics-Guided Generative Agent-Based Modeling
Abstract
PhysicsAgentABM introduces a neuro-symbolic framework that combines mechanistic agents with neural models to improve scalable and calibrated simulation across multiple domains.
Large language model (LLM)-based multi-agent systems enable expressive agent reasoning but are expensive to scale and poorly calibrated for timestep-aligned state-transition simulation, while classical agent-based models (ABMs) offer interpretability but struggle to integrate rich individual-level signals and non-stationary behaviors. We propose PhysicsAgentABM, which shifts inference to behaviorally coherent agent clusters: state-specialized symbolic agents encode mechanistic transition priors, a multimodal neural transition model captures temporal and interaction dynamics, and uncertainty-aware epistemic fusion yields calibrated cluster-level transition distributions. Individual agents then stochastically realize transitions under local constraints, decoupling population inference from entity-level variability. We further introduce ANCHOR, an LLM agent-driven clustering strategy based on cross-contextual behavioral responses and a novel contrastive loss, reducing LLM calls by up to 6-8 times. Experiments across public health, finance, and social sciences show consistent gains in event-time accuracy and calibration over mechanistic, neural, and LLM baselines. By re-architecting generative ABM around population-level inference with uncertainty-aware neuro-symbolic fusion, PhysicsAgentABM establishes a new paradigm for scalable and calibrated simulation with LLMs.
Community
Large language model (LLM)-based multi-agent systems enable expressive agent reasoning but are expensive to scale and poorly calibrated for timestep-aligned state-transition simulation, while classical agent-based models (ABMs) offer interpretability but struggle to integrate rich individual-level signals and non-stationary behaviors. We propose PhysicsAgentABM, which shifts inference to behaviorally coherent agent clusters: state-specialized symbolic agents encode mechanistic transition priors, a multimodal neural transition model captures temporal and interaction dynamics, and uncertainty-aware epistemic fusion yields calibrated cluster-level transition distributions. Individual agents then stochastically realize transitions under local constraints, decoupling population inference from entity-level variability. We further introduce ANCHOR, an LLM agent-driven clustering strategy based on cross-contextual behavioral responses and a novel contrastive loss, reducing LLM calls by up to 6-8 times. Experiments across public health, finance, and social sciences show consistent gains in event-time accuracy and calibration over mechanistic, neural, and LLM baselines. By re-architecting generative ABM around population-level inference with uncertainty-aware neuro-symbolic fusion, PhysicsAgentABM establishes a new paradigm for scalable and calibrated simulation with LLMs.
arXivLens breakdown of this paper ๐ https://arxivlens.com/PaperView/Details/physicsagentabm-physics-guided-generative-agent-based-modeling-3271-72adacbe
- Executive Summary
- Detailed Breakdown
- Practical Applications
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Visual Reasoning over Time Series via Multi-Agent System (2026)
- Agent2World: Learning to Generate Symbolic World Models via Adaptive Multi-Agent Feedback (2025)
- MAGMA: A Multi-Graph based Agentic Memory Architecture for AI Agents (2026)
- Physics-informed Diffusion Mamba Transformer for Real-world Driving (2026)
- STReasoner: Empowering LLMs for Spatio-Temporal Reasoning in Time Series via Spatial-Aware Reinforcement Learning (2026)
- LatentMem: Customizing Latent Memory for Multi-Agent Systems (2026)
- E-mem: Multi-agent based Episodic Context Reconstruction for LLM Agent Memory (2026)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper